
NS?- 24903

Technical Report TR-1235 December 1982

NSG-5123

A METHODOLOGY FOR COLLECTING VALID

SOFTWARE ENGINEERING DATA *

Victor R. Basili

University of Maryland

David M. Weiss

Naval Research Laboratory

*Research supported in part by the National Aeronautics and Space

Administration Grant NSG-5123. Computer support provided in part by

the facilities of NASA/Goddard 5pace Flight Center and the Computer

Science Center at the University of Maryland.

5-3

'_RECEDiNG PAGE CLAN[(NOT FiL_:ED IrA_CzJI_.__ N_NTJONALL_ BLANK

ABSTRACT

An effective data collection method for evaluating software development

methodologies and for studying the software development process is

described. The method uses goal-directed data collection to evaluate

methodologies with respect to the claims made for them. Such claims

are used as a basis for defining the goals of the data collection,

establishin_ a list of questions of interest to be answered by data

analysis, defining a set of data categorization schemes, and designing
a data collection form.

The data to be collected are based on the changes made to the software

during development, and are obtained when the changes are made. To

insure accuracy of the data, validation is performed concurrently with

software development and data collection. Validation is based on

interviews with those people supplying the data. Results from using

the methodology show that data validation is a necessary part of change

data collection. Without it, as much as 50% of the data may be

erroneous.

Feasibility of the data collection methodology was demonstrated by

applying it to five different projects in two different environments.

The application showed that the methodology was both feasible and useful.

5-4

!

II

!
II
II

!
!
!
!
!

II

il
II

!

II
B,

II

!

!

!

!

II

!

!

!

!

i

!

i

!

!

!

!

I

i

A Methodology For Collecting Valid Software

Engineering Data

14eto_- R. Ba.v//_

University of Maryland

/)m4d M. _ei.vs

Naval Research Laboratory

I. Introduction

According to the mythology of computer science, the first computer pro-
gram ever written contained an error. Error detection and error correction are
now considered to be the major cost factors in software development [I, 2, 3].
Much current and recent research is devoted to finding ways of preventing
software errors. This research includes areas such as requirements definition
[4], automatic and semi-automatic pro£rarn generation [5,6], functional
specification [7], abstract specification [8,9, 10, 11], procedural specification

12], code specification [13, 14, 15], verification [16, !7, 18], coding techniques19, 20, 21,22, 23, 24], error detection [25], testing [26, 27], and language design
L16, 28,29, 30, 31].

One result of this research is that techniques claimed to be effective for

preventing errors are in abundance. Unfortunately, there have been few
attempts at experimental verification of such claims. The purpose of this paper
is to show how to obtain valid data that may be used both to learn more about
the software development process and to evaluate software development metho-
dologies in a production environment. Previous [15] and companion papers [32]
present the data and evaluation results. The methodology described in this
paper was developeti as part of studies conducted by the Naval Research Labora-
tory and by NASA's Software Engineering Laboratory [33].

Software Kugineering Ex1_rimentation

The course of action in most sciences when faced with a question of opinion
m to obtain experimental verificatior_ Software engineering disputes are not
usually settled that way. Data from experiments exist, but rarely apply to the
question to be settled. There are a number of reasons for this state of afImrs.
Probably the two most important are the number of potential confounding fac-
tors involved in software studies and the expense of attempting to do controlled

studies tn an industrialenvironment involvingmedium or large scale systems.

Rather than attempting controlled studies,we have devised a method for

conducting accurate causal analyses in production environments. Causal ana-
lyses are efforts to discover the causes of errors and the reasons that changes
are made to software. Such analyses are designed to provide some insight into
the software development and maintenance processes, help confa'm or reject
clmms made for different methodologies, and lead to better techniques for
prevention, detection, and correction of errors. Relatively few examples of this
Rand of study exist in the literature; some examples are. [34, 35, 4, 15, 36]

To provide useful data, a data collection methodology must display certain
attributes. Since .much of the data of interest for real projects are-collected

5-5

!

during the test phase, complete analysis of the data must await project comple-

tion. Although it is important that data collection and validation proceed con-

currently with development, the final analysis must be done from a historical

viewpoint, after the project ends.

Developers can provide data as they make changes during development. In

a reasonably well-controlled software development environment, documentation

and code are placed under some form of conflguration control before being

released for use by others than the author. Changes are defined as alterations

to baseIined design, code or documentation.

A key factor in the data gatherin E process isvalidation of the data as they

become available. Such validity checks result in corrections to the data that

cannot be captured at later times owir_ to the n;_ture of human memory. [37]

Timeliness of both data collection and data validation is quite important to the

accuracy of the analysis.

Careful validation means that the data to be collected must be carefully

specified, so that those suppiyin_ data, those validatinE data, and those perform-

Ln.E the analyses will have a consistent view of the data collected. This is espe-

cially important for the purposes of those wishLn E to repeat studies in both the
same and different environments.

Careful specification of the data requires the data collectors to have a clear

idea of the goals of the study. Specifying goals is itself an important issue,

since, without goals, one runs the risk ot collectin_ unrelated, meaninEless data.

To obtain insight into the software development process, the data collectors

need to know the kinds of errors committed and the kinds of changes made. To

identify troublesome issues, the effort needed to make each change is neces-

sary. For greatest .usefulness, one would like to study projects from software

production envirorLrnents involvinE teams of programmers.

We may summarize the precedin E as the following six criteria:

I. the data must contain information perrmttin_ identification of the

types of errors and changes made,

2. the data must include the cost of makin_ chanEes and correctin E

errors,

3. data to be collected must be defined as a result of clear specification
of the goals of the study,

4. data should include studies of projects from production environments,

involving teams of programmers,

5. data analysis should be hlstorical, but data must be collected and vali-

dated concurrently with development

6. data classification schemes to be used must be carefully specified for
the sake of repeatability of the study in the same and different
environments.

5-6

i

i
i
i
I
I
I
I

I

i

I
i
I

I

I
I
I

i

I

1]. Schema For The Invest_ative]&{ethodology

Our data collection methodology is goal oriented. It starts with a set.of
goals to be satisfied, uses these to generate a set of questions to be answered,

and then proceeds step-by-step through the design and implementation of a
data collection and validation mechamsm. Analysis of the data yields answers to

the questions of interest, and may also yield a new set of questions. The pro-

cedure reties heavily on an interactive data validation process: those supplying
the data are interviewed for validation purposes concurrently with the software
development process. The methodology has been used in two different environ-

ments to study five software projects developed by groups with di_erent back-
grounds using very different software development methodologies. In both

environments it yielded answers to most questions of interest and some insight
into the development methodologies used.

The projects studied vary widely with respect to factors such as application,
size, development team, methodology, hardware, and support software.

Nonetheless, the same basic data collection methodology was applicable everT-
where. The schema used has six basic steps, listed in the following, with consid-

erable feedback and iteration occurring at several different places.

1. Esta_sh the goals of the data collection

We divide goals into two categories: those that may be used to evaluate a

particular -^'+........._,_=L _ development methodology" relative to th= cla_-ns ma,-d= iv: _-,
and those that are common to allmethodologies to be studied.

As an example, a goal of a particular methodology, such as information hid-
[ng [88], might be to develop software that iseasy to change. The corresponding

data collection goal is to evaluate the success of the developers in meeting this

goal, i.e.evaluate the ease with which the software can be changed. Goals in this

category may be of more interest to those who are involved in developir_ or

testing a particular methodology, and must be defined cooperatively with them.

A goal that is of interest regardless of the methodology being used is to

characterize changes in ways that permit comparisons across projects and

environments. Such goals may interest software engineers, programmers,

man_gers, and others more than goals that are specific to the success or failure

of a particular methodology.

Consequences of OmitUng Goals

Without goals, one is likely to obtain data in which either incomplete pat-

terns or no patterns are discernible. As an example, one goal of an early study

[15] was to characterize errors. During data analysis, it became desirable to

discover the fraction of errors that were the result of changes made to the

software for some reason other than to correct an error. Unfortunately, none of

the goals of the study were related to this type of change, and there were no
such data available.

2. Develop a list of questions of interest

Once the goals of the study have been established, they may be used to

develop a list of questions to be answered by the study. Questions of interest

de_Ine data parameters and categorizations that permit quantitative analysis of

the data. In general, each goal will result in the generation of several different

questions of interest. As an example, if the goal is to characterize changes,

some corresponding questions of interest are: "What is the distribution of

changes accordin_ to the reason for the change?", "What is the distribution of

5-7

OF POOR QUALITY

changes across system components?", '_'hat is the distribution of effort to

design changes?"

As a second example, ifthe goal is to evaluate the ease with which software

can be changed, we may identify questions of interest such as: "Is it clear where

a change has to be made in the software?", "Are changes confined to single

modules?", "What was the average effort involved in making a change?"

Questions of interest form a bridge between subjectively-determined goals

of the study and the quantitative measures to be used in the study. They permit

the investigators to determine the quantities that need to be measured and the

aspects of the goals that can be measured. As an example, ifone is attempting

to discover how a design document is being used, one might collect data that

show how the document was being used when the need for a change to it was

discovered. This may be the only aspect of the document's use that is measur-
able.

Goals for which questions of interest cannot be formulated and goals that

cannot be satisfied because adequate measures cannot be defined may be dis-

carded. Once formulated, questions can be evaluated to determine ifthey com-

pletely cover their associated goals and if they define quantitative measures.

Finally, questions of interest have the desirable property of forcing the investi-

gators to consider the data analyses to be performed before any data are col-
lected.

Consequences of Omitting Questions Of Interest

Without questions of interest, there may be no quantitative basis for satisfy-

ing the goals of the study. Data distributions that are needed for evaluation pur-
poses, such as the distribution of effort involved in making changes, may have to
be constructed in an ad hoc way, and be incomplete or inaccurate.

3. Establish data categories

Once the questions of interest have been established, categorization

schemes for the changes and errors to be examined may be constructed. Each

question generally induces a categorization scheme. If one question is, "What

was the distribution of changes according to the reason for the change?", one

will want to classify changes according to the reason they are made. A simple
categorization scheme of this sort is eTrov corrections vs. no_z-e_-rorcoy"rectio'n_

(hereafter ca/led nzodifications).

Each of these categories may be further subcategorized according to rea-
son. As an example, modifications could be subdivided into those modifications

resulting from requirements changes, those resulting from a change in the
development support environment (e.g. compiler change), planned enhance-
ments, optimizations, and others.

Such a categorization permits characterization of the changes with respect

to the stabilityof the development environment, with respect to different kinds

of development activities,etc. When matched with another categorization such

as the difficultyof making changes, this scheme also reveals which changes are
the most difficultto make

Each categorization scheme should be complete and consistent, i.e.every

change should fit exactly one of the subcategories of the scheme. To insure

completeness, the category "Other" is usually added as a subcategory Where

some changes are not suited to the scheme, the subcategory "Not Applicable"

may be used. As an example, ifthe scheme includes subcategories for different

levels of effort in isolating error causes, then errors for which the cause need

5-8

I

I

I

I

il
II
if
II
e
II
II
I
!
!
I
I
I
II
If
II
I

H

not be isolated (e._.clericalerrors noticed when reading code) belong in the
"Not Applicable" subcategory.

Consequences Of Not Defining Data Categories Before CollectingData

Omitting the data categorizationschemes may result in data that cannot

later be identifiedas fittingany particularcategorization. Each change then
tends to define itsown category, and the resultisan overwhelming multiplicity
of data categories,with littledata ineach category.

4. Design and test data collection form

To provide a permanent copy of the data and to reinforce the program-
mers' memories, a data collectionform is used. Form design was one of the
trickiestparts of the studies conducted, primarily because forms represent a
compromise among conflictingobjectives. Typical conflictsare the desire to

collecta complete, detailedset of data that may be used to answer a wide range
of questions of interest,and the need to minimize the time and effortinvolved in

supplying the data. Satisfyingthe former leads to large, detailed forms that

require much time to fillout. The latterrequires a short form organized so that
the person supplying the data need onlycheck offboxes.

Including the data suppliers in the form design process is quite beneficial.
Complaints by those who must use the form are resolved early (i.e.before data
collectionh_inq____....,,the form ,=_,y_o _l_,o_ _^ _,_,,_...._Ao_ __,_^'_'^___data'_^--

(e.g.for use as in configuration management), and the data suppliers feelthey
are a usefulpart of the data collectionprocess.

The forms mu::t be constructed so that the data they contain can be used to

answer the questions of interest.Several design iterationsand test periods are
generally needed before a satisfactorydesign isfound.

Our principalgoals inform designwere to produce a form that:

I. fiton one piece of paper,

2. could be used in severaldifferentprogramming environments, and

3. permitted the programmer some flexibilityin describing the
change.

Figure I shows the lastversion of the form used for the SEL studies. (An
earlierversion of the form was significantlymodified as a resultof experience
gained in the data collectionand analysisprocesses.) The firstsections of the

form request textual descriptions of the change and the reason it was made.
Following sections contain questions and check-off tables that reflectvarious
categorizationschemes.

As an example, a categorizationof time to design changes isrequested in
the firstquestion followingthe descriptionof the change. The completer of the

form is given the choice of 4 categories (one hour or less,one hour to one day,
one day to three days, and more than three days) that cover allpossibilitiesfor
design time.

Consequences Of Not Using A Data CollectionForm

Without a data collectionform, it is necessary to rely on the developer's
memomes and on perusal of early versions of design documentation and code to

identifyand categorize the changes made. This approach leads to incomplete,
unaccurate data.

5-9

!

PROJECT NAME

CHANGE REPORT FORM

NUMBER

CURRENT DATE

I
I

I

REA.SON: Why was the change made?

SECTION A - iDENTiFICATION

DESCRIPTION: What change was made?

EFFECT: What ¢omponents (or documtmt3| Ire (:hinged? (Include ve_ioni

EFFORT: What additiomd components (or documents) were examined in demrmining what change was neKIKI?,

(Month Day Year)

Nell for change determined on

Change started on

What was the effort in p_on time required to understand and implement the change?

_1 hour or less. _1 hour to I day. _I day to 3 days. more 1:ban 3 days

SECTION B - TYPE OF CHANGE (How is this change best charac'mrized?|

C] ¢.rmr correction

C] Planned enhancement

t'l Imolemenration of requirements change

{_ Improvement of tJarity, maintainability, or documentation

I_. ImDrovement of user ,_rvices

Was more than one component affected by the chan_l? Yes

r-i Insertion/deletion of debug code

r'l Optimization of time/space/accuracy

r-I Adaptation 1:o emironment change

I"=1 Other (Explain in E]

NQ .,.

FOR ERROR CORRECTIONS ONLY

SECTION C - TYPE OF ERROR (How is this error bes¢ ¢harac':erized?}

O Recluirements incorrect or misinterpreted _ Misunderccanding of ex_rnai envlronment, except lanquage

,"; Functional soecific:tions incorre¢,: or misinterpreted r-I Error in u_m of Drogramming iangua,eje/compller

Oes,gn error, involving several comt,,onents I-I Cieric'al error

Error in the design or {rnc_iemen_3tion of a single component I_l Other (Explain in E|

FOR DESIGN OR iMPLEMENTATiON ERRORS ONLY

If the error was in design or imDlementation:

The error was a mista_;:en ass,JmOtlon GP_OUI_ the value or _tnJc_Jre of data

The error was a mistake tn control I_,c or c_mputation of an exDression

i

I
I

I

I
I

I
I

I

I
I

I
l

SlO-2 (6/7 e}

Figure I SEL Change Report Form (front)

5-i0
ORiG'.,NAL PAGe. [3

OF POOR QUALITY

I
I

I

OR_GI?_AL

OF POOR

PAGE IS

QUALITY

I
i

I
I

I

i

i

I
I

I

I
i

I
l

FOR ERROR CORRECTIONS ONLY

SECTION 0 - VALIDATION ANO REPAIR

Whll activities _m uwd to vaGdam _._e program, demct '_e error, and find its c,tuse?

Activities

Used for

Validation

Prl-lCClDtlncl teSt runs

A¢ceDtan¢ll tllstlng

Pos [.acc**D tance use

In_tiQn of o*JclDut

Code reading by _rogram.ner

P-,--_ m_lting by other person

T,dks vim other pmgrammen

System error mMsegls

Prc_ect Sl_lCifi¢ error m_tacjes

Reading docu_mtati¢_

Tr_'e

Oucrto

Ctou.m (.-r_ncelarmbum list

P.*oo. = :ec_.nique

Activities

Successful

in Oet¢,¢ dng

Erl_r Symptoms

._h** (ExWoin ;n E) z T .

What was the tim= used to isolam _e cause?

_o¢_1_ hour or lesS. _one how tO one day.

If nmmr found, was = workamund uwd?_Y_ No (Explain in E}

V;.'t,i this ar:_r n_lamd to a _rt._ious change?

_Yes ICI_rRe Rer, ort #/Date) _No _C_n't tell

..e,1 did the error enter _he wstem?

_requkements _tunctional sl_.c_ _des_ln _ding and test

Activities

Tried to

Find

Cause

_more than one day. _mr, er found

_.__ot her Can't tell

Activities

Succmsfui

in Finding
Cease

SECT;ON E - AOOITIONAL INFORMATION

PI_.p. qive an'/ir_tormecion that may be hel;)tu| in ¢atecjorizing tl_e error or cnan_e, and understanding its ¢au_ and its

r4ml;i_tlonS.

uthorlzec: _)aTe;

I
I
I

Figure i SEL Change Report Form (back)

5-Ii

5. Collect and validate data

Data are collected by requtrir_ those people who are making software
changes to complete a change report form for each change made, as soon as the
the change is completed. VaLidation consists of checking the forms for correct-
ness, consistency, and completeness. As part of the validation process, in cases
where such checks reveal problems the people who filled out the forms are
interviewed. Both collection and validation are concurrent with software

development; the shorter the lag between programmers completing forms and
being interviewed concerning those forms, the more accurate the data.

Perhaps the most significant problem during data collection and validation
is insurir_ that the data are complete, i.e. that every change has been described
on a form. The better controlled the development process, the easier this is to
do. At each sta_e of the process where conf_uration control is imposed, change
data may be collected. Where projects that we have studied use formal
configuration control, we have integrated the configuration control procedures
and the data collection procedures, using the same forms for both, and taking
advantage of conf_uration control procedures for validation purposes. Since all
changes must be reviewed by a conf_uration control board in such cases, we are
guaranteed capture of all changes, i.e. that our data are complete. Further-
more, the data collection overhead is absorbed into the configuration control
overhead, and is not visible as a separate source of irritation to the developers.

Consequences Of Omitting Validation

One resultof concurrent development, data collection,and data validation

isthat the accuracy of the collectionprocess may be quantified.Accuracy may
be calculated by observing the number ofmistakes made in completing data col-
lectionforms. One may then compare, for any data category, pre-vaLidationdis-

tributions with post-validationdistributions.We callsuch an analysis a valida-
tion analysis.The validationanalysisof the SEL data shows that itispossiblefor
inaccuracies on the order of 50% to be introduced by ornittmg validation. To

emphasize the consequences of omitting the validationprocedures, we present
some of the resultsof the validationanalysisof the SEL data in'sectionIll.

8. Analyze Data

Data are analyzed by calculatingthe parameters and distributionsneeded

to answer the questions of interest. As an example, to answer the question
"What was the distributionof changes according to the reason for the change?",
a distributionsuch as that shown in figure2 might be computed from the data.

Applicationof the Schema

Applying the schema requires iterating among the steps several times.
Defining the goalsand establishingthe questions of interestare tightlycoupled,
as are establishin_the questions of interest,designing and testing the form(s),

and collectingand validatingthe data. Many of the considerations involved in
trnplementing and integratingthe steps of the schema have been omitted here

so that the reader may have an overview of the process. The complete set of
goals, questions of interest,and data categorizations for the SEL projects are
shown in a cornpa_ntonpaper [32].

5-12

l
I

I

I
I
I

I

I
I

I

I

I

I
I

I
I

I
l

t

I

,m

i

°

l
!w
to.

I

I _
i

_J

I [,z

_a

OF POOR QUALF_

.- • ..

--" _ _ _ _.

• !
::-:

!•

I,
,---

I

i

_c

5-13

r.

r

u%

-n
0
_n

C'4

_2
N

©

Support Procedures and Facilities

In addition to the activitiesdirectlyinvolved in the data collectioneffort,

there are a number of support activitiesand facilitiesrequired. Included as

support activitiesare testing the forms, collection,and validationprocedures,
training the programmers, selectinga data base system to permit easy analysis
of the data, encoding and entering data into the data base, and developing

analysisprograms.

[] DetailsOf SEL Data Collection And Validation

In the SEL environment, program librarieswere used to support and control

software development. There was a full-timelibrarianassigned to support SEL

projects. Allproject library changes were routed through the librarian.In gen-
eral,we define a change to be an alterationto baselined design, code, or docu-
mentation. For ZEL purposes, only changes to code, and documentation con-

tained in the code, were studied. The program librariesprovided a convenient

mechanism foridentifyingchange s.

Each time a programmer caused a librarychange, he was required to com-

plete a change report form (figurei). The data presented here are drawn from
studies of three differentSEL projects,denoted SELl, SEI2, and SEL3. The pro-

"cessing procedures were as follows.

I. Programmers were required to complete change report forms for all

changes made to libraryroutines.

2. Programs were kept inthe project libraryduring the entiretestphase.

. After a change was made a completed change report form describing

the change was submitted. The form was firstinformally reviewed by

the project leader. It was then sent to the SEL library staffto be
logged and a unique identifierassigned to it.

° The change analyst reviewed the form and noted any inconsistencies,
omissions, or possible miscategorizations. Any questions the analyst

had were resolved in an interviewwith .theprogrammer. (Occasionally

the project leader or system designer was consulted rather than the
individualprogrammer.)

The change analyst revised the form as indicated by the resultsof the

programmer interview,and returned itto the librarystafffor further

processing. Revisions often involved cases where several changes were
reported on one form. In these cases, the analyst insured that there

was only one change reported per form; this often involved fillingout
new forms. Forms created inthisway are known as generated forms.

(Changes were considered to be different ff they were made for

differentreasons, ifthey were the resultof differentevents, or ifthey
were made at substantiallydifferenttimes (e.g.several weeks apart).

As an example, two differentrequirements amendments would resultin
two differentchange reports, even if the changes were made at the
same time in the same subroutine.)

5-14

I

i

I

i

I

I

II

I

I

i

I

I

I

I

II

I

I

I

!

il
II

II
II

II
I

I

II
II

II
l

II

I
i

II
I

!
I

Occasionally,one change was reported on several differentforms. The

forms were then merged intoone form, again to insure one and only

one change per form. Forms created in thisway are known as cam-
&_ed forms

. The library staffencoded the form for entry into the (automated) SEL
data base. A preliminary, automated check of the form was made via a

set of data base support programs. This check, mostly syntactic,

ensured that the proper kinds of values were encoded into the proper
fields,e.g. that an alphabetic character was not entered where an

integer was required.

7. The encoded data were entered into the SEt data base.

8. The data were analyzed by a set of programs that computed the neces-
•sary distributionsto answer the questions of interest.

Many of the reported SEL chan_es were error corrections. We define an

error to be a discrepancy between a specificationand its implementation.
Although itwas not always possible toidentifythe exact location of an error,it
was always possible to identify exactly each error correction. As a result,we
generally use the term error to mean error correction.

For data validationpurposes, the most important parts of the data collec-

tion procedure are the review by the change analyst,and the associated pro-
grammer interviewto resolve uncertaintiesabout the data.

The SEL validationprocedures afforded a good chance to discover whether
validation was really necessary; it was possible to count the number of rnis-
categorizations of changes and associated misinformation. These counts were

obtained by counting the number of times each question on the form was
incorrectlyanswered.

An example ismisclassificationsoferrors as clericalerrors.(Clericalerrors
were defined as errors that occur in the mechanical translationof an item from

one format to another, e.g. from one coding sheet to another, or from one
medium to another, e.g.coding sheets to cards.)For one of the SEL projects,46

errors originallyclassifiedas clericalwere actually errors of other types. (One
of these consisted of the programmer forgettingto include several linesof code
in a subroutine. Rather than clerical,this was classifiedas an error in the

design or implementation of a singlecomponent of the system.) Initially,this

project reported 238 changes, so we may say that about 19Z of the original
reports were misclassifiedas clericalerrors.

The SEL validationprocess was not good for verfiytngthe completeness of

the reported data. We cannot tellfrom the validationstudieshow many changes
were never reported. This weakness can be eliminated by integratingthe data
collectionwith stronger conf_uration control procedures.

Validation Differences Among SE_ Projects

As experience was gained in collecting,validating,and analyzing data for
the SEL projects,the qualityof the data improved significantly,and the valida-
tion"procedures changed slightly. For SELl and SEL2, completed forms were

examined and programmers interviewedby a change analyst withina few weeks
(typLcally3 to 6 weeks) of the time the forms were completed. For project ZEL2,
the task leader (lead programmer forthe project) examined each form before

the change analysts saw it.

5-15

Project SEL3 was not monitored as closely as SELl and SEL2. The task
leader, who was the same as for SEL2, by then understood the data categoriza-

tion schemes quite well and again examined the forms before sending them to

the SEL. The forms themselves were redesigned to be simpler but stillcapture

nearly allthe same data. Finally,several of the programmers were the same as
on project SEI2 and were experienced in completing the forms.

Est_aat.ing Inaccuracies In The Data

Although there isno completely objectiveway to quantify the inaccuracy in
the validated data,we believe itto be no more than 57,for SELl and SEL 2. By

thiswe mean that no more than 5Z of the changes and errors are misclassifled

in any of the data collection categories. For the major categories, such as
whether a change isan error or modification,the type ofchange, and the type of

error,the inaccuracy isprobably no more than 8%.

For SEL3, we attempted to quantify the resultsof the validationprocedures

more carefully. After validation,forms were categorized according to our
confidence in theiraccuracy. We used four categories:

(i) Those forms for which we had no doubt concerning the accuracy of
the data. Forms in this cateogry were estimated to have no more

than a I% chance of inaccuracy.

(2) Those forms for which there was littledoubt about the accuracy of

the data. Forms in this category were estimated to have at most a

10F,chance ot an inaccuracy.

(3) Those forms for which there was some uncertaincy about the accura-

cy,with an estimated inaccuracy rate of no more than 30%.

(4) Those forms for which there was considerable uncertaincy about the

accuracy, with an estimated inaccuracy rate of about 50_o.

Applying the inaccuracy rates to the number of forms tn each category gave us

an estimated inaccuracy of at most 3Z inthe validatedforms for SEL3.

Prevalent Mistakes In Completing Forms

Clear patterns of mistakes and misclassiflcationsin completing forms

became evident during validation. As an example, programmers on projects
SELl and SEL2 frequently included more than one change on one form. Often
thiswas a resultof the programmers sending the changes to the library as a

group.

Comparative ValidationResults

Figure 3 provides an overview of the resultsof the validationprocess for the

3 SEL projects The percentage of originalforms that had to be corrected as a
result of the validationprocess is shown. As an example, 3270of the originally
completed change report forms for SEL3 were corrected as a resultof valida-

tion. The percentages are based on the number of original forms reported
(sincesome forms were generated, and some combined, the number of changes
reported after validationis differentthan the number reported before valida-

tion).Figure 4 shows the fractionof generated forms expressed as a percentage
of totalvalidatedforms.

Figure 3 shows that pre-validationSEL3 forms were sigmficantlymore accu-

rate than the pre-validationSELl or SEL2 forms. When the generated and com-
bined forms are also considered, the pre-validattonSEL3 data appear to be con-
siderablybetter then the pre-validationdata for eitherof the other projects. We

5-16

I
I

I
I

I
I

I

I
I

I
I

I

l

l

I
l
I
I

I

!

l

!

!

!

l

I

!

!

l

l

I

l

!

!

l

i

believe the reasons for thisare the improved design of the form, and the farni-
Iiarityof the task leader and programmers with the data coUection process.
(Generated forms are shown in _ure 4. Combined forms for allof the projects

represented a very small fractionof the totalvalidatedforms.)

These (overall)results show that careful validation,including programmer
interviews, is essential to the accuracy of any study involving change data.

]_hermore, itappears that with weU-designed forms, and programmer train-
b_, there is improvement with time inthe accuracy of the data one can obtain.

We do not believe that itwillever be possible to dispense entirelywith program-
mer interviews, however.

Erroneous Classifications

Table 1 shows misclassifications of error as modifications and modifications

as errors. As at/example, for SELl, 14_, of the original forms were classified as
modifications, but were actually errors. Without the validation process, consid-
erable inaccuracy would have been introduced into the initial categorization of
changes as modifications or errors.

Table 2 is a sampling of other kinds of classification errors that could con-
tribute significantly to inaccuracy in the data. All involve classification of an
error into the wrong subcategory. The first row shows errors that were classified
by the programmer as clerical, but were later reclassified as a result of the vali-
dation process into another category. For SELl, significant inaccuracy (19_,)
would be introduced by omitting the vatidationprocess.

Table 3 is similar to table _.,but shows misclassificationsinvolving

modifications. The firstrow shows modifications that were classifiedby the.pro-
gramrner as requirements or specificationschanges, but were reclassifiedas a
resultofvalidation.

Variation In MisclassificaUon

Data on misclassifications of change and error type subcategories, such as
shown in table 2, tends to vary considerably among both projects and sub-
categories. (Misclasssification of clerical errors as shown in table 2 is a good
example.) This is most likely because the misclassLelcations represent biases in
the judgements of the programmers. It became clear during the validation pro-
cess that certain programmers tended toward particular misclassifications.

The consistency between projects SEL2 and SEL3 in table 2 probably occurs
because both projects had the same task leader, who screened all forms before
sending them to the SEL for validatiorL

5-17

!

,"3

0 50"

o I

I 4g

T 3_
F

F
2g

S

%g

v 3g

f

D

0
R
M
$ Ig

55

51

32

SELl SEL_ SEL_

PROJECT

FIGURE 3 CC_RECTE9 FORMS

3_

I?

IS

SEL_ SEL2 5EL3

=ROJECT

5-18

I

I

I
I

I
I

I
I
I

I
I

l

I
I

I
l
l

I
l

l

I

I

l

I

l

I

I

I

I

l

l

I

I

I

I

I

I

I SELl SEL2 SEL3

Modificationsclassifiedas errors iZ [5% 'ilessthan I%

Errors classifiedas modifications 14% I 5% I 2%

Table I Erroneous Modificationand Error Classifications

(Percent of OriginalForms)

OriginalClassification

ClericalError

(Use of)Programming Language

Incorrect or Misinterpreted Requirements

,Design Error

SELl SEL2 ! SEL3

19% 7_ I 6Y.
O_ 5_ I 3%

0% I lessthan I%

_,. !%

Table 2 Typical Error Type Misclassifications
(Percent of OriginalForms)

Requirements or specificationchange

Design change

Optimization
Other

SELl

I%

8%

8%

3%

SEL8

lessthan !%

I%

lessthan I%

lessthan I%

Table 3 Erroneous ModificationClassifications
(Percent of OriginalForms)

5-19

!

Conclumona Concerning Validation

The preceding sections have shown that the validation process, particularly

the programmer interviews_ are a necessary part of the data collection metho-
dology. Inaccuracies on the order of 50Z may be introduced without this form of
validation. Furthermore, it appears that with appropriate form design and pro-

grammer experience in completing forms, the inaccuracy rate may be substan-

tially reduced, although it is doubtful that it can be reduced to the level where
programmer interviews may be omitted from the validation procedures.

A second significant conclusion is that the analysis performed as part of the
validation process may be used to guide the data collection project; the analysis
results show what data can be reliably and practically collected, and what data

cannot be. Data collection goals, questions of interest, and data collection forms

may have to be revised accordingly.

IV. Recommendations For Data Collectors

We believe we now have sufficient experience with change data collection to

be able to apply it successfully in a wide variety of environments. Although we
have been able to make comparisons between the data collected in the two
environments we have studied, we would like to make comparisons with a wider

variety of environments. Such comparisons will only be possible if more data

become available. To encourage the establishment of more data collction pro-
jects, we feel it ts important to describe a successful data collection methodol-

ogy, as we have done in the preceding sections, to point out the pitfalls involved,
and to suggest ways of avoiding those pitfalls.

Procedural Lessons Learned

ProbLems encountered in various procedural aspects of the studies were
the most difficult to overcome. Perhaps the most important are the following.

i. Clearly understanding the working environment and specifying the
data collection procedures were a key part of conducting the investiga-

tion. Misunderstanding by the programmer of the circumstances that

require him/her to file a change report form will prejudice the entire
effort. Prevention of such misunderstandings can partly be accom-
plished by training procedures and good forms design, but feedback to

the development staff, i.e. those filling out the data collection forms,
must not be omitted.

2. Similarly, misunderstanding by the change analyst of the cir-
cumstances that required a Change to be made will result in

misclassiflcations and erroneous analyses. Our SEL data collection was
helped by the use of a change analyst who had previously worked in the

NASA environment and understood the application and the develop-
ment procedures used.

3. Timely data validation through interviews with those responsible for
reporting errors and changes was vital, especially during the first few
projects to use the forms. Without such validation procedures, data

will be severely biased, and the developers wall not get the feedback to
correct the procedures they are using For reporting data.

4. Mimmtz/ng the overhead imposed on the people who were required to
complete change reports was an important factor in obtainmg com-

plete and accurate data. Increased overhead brought increased reluc-
tance to supply and discuss data. In projects where data collection has

been :ntegrated with configuration control, the visible data collection

5-20

I
I

I
I

I
I

I
I
I

I

I

l

I
l

I
l

l
l

I

I

I

I

I

I

I

I

I

I

l

I

I

I

I

I

I

I

l

.,

and validationoverhead is significantlydecreased, and is no longer an
important factor in obtaining complete data. Because configuration
control procedures for the SEL environment were informal,we believe

we did not capture allSEL changes.

In cases where an automated data base is used, data consistency and
accuracy checks at or immediately prior to analysisare vital.Errors in
encoding data for entry intothe data base willotherwise bias the data.

Nonprocedural Lessons Learned

In addition to the procedural problems involved in desinging and imple-
menting a data collectionstudy, we found several other pitfallsthat could have

affected our resultsand theirinterpretation.They are listedin the fol-strongly
lowing.

I.

,

,

4,

Perhaps the most significantof these pitfallswas the danger of inter-

preting the results without attempting to understand factors in the
environment that might affectthe data. As an example, we found a

surprisinglysmall percentage of interfaceerrors on allof the SEL pro-
jects. This result was surprising since interfaces are an often-cited
source of errors. There was also other evidence in the data that the

software was quite amenable to change. In trying to understand these

results,we discussed them with the principaldesigner of the SEL pro-
jects (allof which had the same application),itwas clear from the dis-

cussion that as a result of their experience with the application,the
designers had learned what changes to expect to theirsystems, organ-

ized the design so that the expected changes would be easy to make,
and then re-used the design from one project to the next. Rather than

misinterpreting the data to mean that interfaceswere not a significant
software problem, we were led to a better understanding of the
environment we were studying.

A second pitfallwas underestimating the resources needed to validate

and analyze the data. Understanding the change reports well-enough

to conduct meaningful, efficientprogrammer interviews forvalidation
purposes initiallyconsumed considerable amounts of the change
analysts'time. Verifying thatthe data base was internallyconsistent,

complete, and consistent with the paper copies of reports was a con-
ttnuingsource of frustrationand sink for time and effort.

A third potentialpitfallin data collectionisthe sensitivityof the data.
Programmers and designers sometimes need to be convinced that
error data willnot be used against them. This did not seem to be a

significantproblem on the projects studied for a variety of reasons,

including management support, processing of the error data by people
independent of the project,identifyingerror reports in the analysis
process by number rather than name, informing newly hired project

personnel that completion of error reports was considered part of
theirjob,and high project morale. Furthermore, project management
did not need error data to evaluate performance.

One problem for which there isno simple solutionisthe Hawthorne (or
observer) effect[39], When project personnel become aware that an

aspect of theirbehavior isbeing monitored, their behavior willchange.
Iferror monitoring is a continuous, long-term aetivltythat is part of
the normal scheme of software development, not associated wlth

evaluation of programmer performance, this effect may become
tnstgmficant. We believethiswas the case with the projects studied.

5-21

5. The sensitivity of error data is enhanced in an environment where
development isdone on contract. Contractors may feelthat such data

are proprietary. Rules for data collectionmay have to be contractually
specified.

Avoiding Data Collection PR/alls

In the foregoing sections a number of potential pitfallsin the data collec-

tion process have been described. The followinglistincludes suggestions that
help avoid some of these pitfalls.

I. Select change analysts who are familiarwith the environment, applica-
tion,project,and development team.

2. Establish the goals of the data collectionmethodology and define the

question_ of interest before attempting any data collection.Establish-
ing goals and deflmng questions should be an iterativeprocess per-

formed in concert with the developers. The developers' interestsare
then served as wellas the data collector's.

3. For initialdata collectionefforts,keep the set of data collectiongoals
small. Both the volume of data and the time consurried in gathering,
validating,and analyzing itwillbe unexpectedly large.

4. Design the data collectionform so that itmay be used for configuration

control,so that itistailoredto the project(s)being studied,so that the
data may be used for comparison purposes, and so that those filling

out the forms understand the terminology used. Conduct training ses-
sionsin fillingout forms fornewcomers.

5. Integrate data collection and validation procedures into the
configuration control process. Data completeness and accuracy are

thereby improved, data collectionis unobtrusive, and collectionand

validationbecome a part of the normal development procedures. In
cases where configuration control is not used or is informal, allocate

considerable time to programmer interviews,and, ifpossible,docu-
mentation search and code reading.

6. Automate as much of the data analysisprocess as possible

Limitations

It has been previously noted that the main limitation of using a goal-

directed data collectionapproach in a production software environment isthe
inabilityto isolatethe effectsof singlefactors. For a variety of reasons, con-
trolledexperiments that may be used to testhypotheses concerning the effects

of single factors do not seem practical. Neither can one expect to use the
change data from goal-directed data collectionto testsuch hypotheses.

A second major limitationts that lost data cannot be accurately recap-

tured. The data collected as a result of these studies represent fiveyears of
data collection.During that time there was considerable and continuing con-
siderationgiven to the appropriate goals and questions of interest.Nonetheless,
as data were analyzed, it became clear that there was information that was

never requested but that would have been useful. An example is the length of

time each error remained in the system. Programmers correcting their own
errors, which was the usual case, can supply this data easilyat the time they
correct the error. Our attempts to discover error entry and removal times after

the end of development were fruitless.(Error entry times were particularly
difficultto discover.) Given such data, one could isolateerrors that were not

easilysusceptible to detection. This type of example underscores the need for

5-22

I

I
I

I
I
I
I

I
I

I

I
I

I

I

I
I
I

I
I

!

!
I

I
I
I

I
I

I
I
I

I
i

I
!

I
i

careful planning prior to the startof data collection.

Recommendations That May Be Provided To the Software Developer

The nature of the data collectionmethodology and the environments in

which itcan be used do not generallypermit isolationof the effectsofparticular
factors on the software development process. The results cannot be used to

suggest that controlling a particular factor in the development process will
reduce the quantity or cost of particularkinds o_ errors. We have found that the

patterns found in the data do suggest that certain approaches, when applied in
the environment studied,willimprove the development process.

As an example, in the SEL environment neither external problems, such as

requirements changes, nor global problems, such as interface design and
specification,were significant.Furthermore, the development environment was

quite stable. Most problems were associated with the individualprogrammer.
The data show that in the SEL environment itwould clearlypay to impose more

control on the process of composing individualroutines. Since "detectingand

correcting most errors was apparently quite easy in the overwhelming majority
of cases, more attention should be paid to preventing errors from entering the

code initially.

Conclusions Concerning Data CollectionFor Methodology Evaluation Purpolmg

The data collectior-,schema F'-_'-'-___t,t,...................._--

)ects in two differentenvironments. We have been able to draw the following
conclusions as a result of designing and implementing the data collection

processes.

i. In allcases, ithas been possible to collectdata concurrently with the
software development process in a software production environment.

2. Data collectionmay be used to evaluate the applicationof a particular

software development methodology, or simply to learn more about the

software development process. In the former case, the better defined
the methodology, the more precisely the goals of the data collection

may be stated.

3. The better controlledthe development process, the more accurate and

complete the data.

4. For all projects studied, it has been necessary to validate the data,
including interviewswith the project developers.

5. As patterns are discerned in the data collected, new questions of
interest emerge. These questions may not be answerable with the
availabledata, and may require establishingnew goals and questions of

interest.

Motivations For Conducting _mflar Studies

The difficultiesinvolved in conducting large scale controlled software

engineering experiments have as yet prevented evaluationsof software develop-
ment methodologies m the environments where they are often claimed to work
best. As a result,software engineers must depend on tess formal techmques
that can be used inrealworkmg environments to establishlong-term trends. We

vlew charge analysts as one such technique and feelthat more techniques, and

many more resultsobtained by applying such techniques,are needed.

5-23

!

Acknowledgments

The authors thank the many people at NASA/GSFC and Computer Sciences

Corporation who filledout forms and submitted to interviews, especially Jean

Grondalski and Dr. Gerald Page, and the librarians, especially Sam DePriest.

We thank Dr. John Gannon, Dr. Richard Meftzer, Frank McGarry, Dr. Gerald

Page, Dr. David Parnas, Dr. John Shore, and Dr. Marvin Zelkowltz for their many

helpful suggestions.

Deserving of special mention is Frank McGarry, who had sufficient foresight

and confidence to sponsor much of this work and to offer his projects for study.

References

1. B. Boehrn and Others, In/o_ation processing/Data Automa2ion Iraplica-
t_ns .Of Air Force Comma_nd and Control Requirements in the 1980's

(CCIP-85), Space and Missile Systems Organ/zation, Los Angeles (February

1972). Technology Trends: Software

2. B. Boehrn, "Software and Its Impact: A Quantitative Assessment," Datama-

tion 19(5) pp. 48-59 (May 1973).

3. R. Woiverton, "The Cost Of Developing Large Scale Software," IEEE Trans.

ComImzte_ 23(6) (1974).

4. T. Bell, D. Bixler, and M. Dyer, "An Extendable Approach to Computer-Aided
Software Requirments Engineering," [EEE Trm_s. Softv#-re Engineering
SE-8(1) pp. 49-60 (January 1977).

5. A Ambler, D. Good, J. Browne, and et. a/., "GYPSY: A Language for
Specification and Implementation of Verifiable Programs," t_oc. o/The ACM

Can/erence on LanFuage Design)'or Reliable Softy#ave, pp. I-I0 (March
1977).

6. Z. Manna and R. Waldinger, "Synthesis: Dreams => Programs," [EEE Trans.

Software Engineering Sg-5(4) pp. 294-329 (July 1979).

7. K Hemnger, "Specifying Requirements for Complex Systems: New Tech-

tuques and Their Application," IEEE Trans. Soft,are _ngineering SE-6 pp.

2-13 (January 1980),

8. DI L Parnas, "A Technique For Software Module Specification With Exam-

ples," Comm. ACM 15(5) pp. 330-336 (May 1972).

9. J. Guttag, "The Specification and Application to Programming of Abstract

Data Types," CSRG-59, Umversity of Toronto Dept. of Computer Science
Computer Systems Research Group (1975).

10. J. Guttag, "Abstract data types and the development of data structures,"

Comm. ACM 20 pp. 396-404 (June 1976).

!i]3. Liskov and S. Zilles, "Specification Techniques for Data Abstraction,"

[EEE Tra_. So/t_uare Engineering SE-I(I) pp. 7-19 (March 1975).

12. H. Mills,R. Linger, and B. Witt, StT"uctured Programming TheoT%/and Prac-

tzce, Addison-Wesley, Reading (1979).

:3 S. Came and E. Gordon, "PDL - A tool for software design," Proc. Na2. Com-
;nzter Con/, pp. 27!-276 (1975)

5-24

l

I

I
I

I
I
I

I
I

l
I
I

I

I
I

I
I

I
I

I

I

l

l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

!4. H. Elovitz, "An Experiment In Software Engineering: The Architecture
Research FacilityAs A Case Study," Proc. Fourth IntntL Covtf.Soft_uere

e.@i_eemng, pp. 145-152 (1979),

15. D. Weiss, "Evaluating Software Development by Error Analysis:The Data

from the Architecture Research Facility,"J. S_stern._cLnd Soft--re 1 pp.
57-70 (1979).

16. E, W. Dijkstra,A D_cipl{ne of Prog'rcLnzrtti_tg,Prentice-Hall,Englewood Cliffs
(1978).

17. R.W. Floyd, "Assigning Meanings to Programs," Prsc. Svntposi_rn _t Applied
Methema_es XIX pp. 19-$2 AlxlericanMathematical Society,(1967),

18. C. A. R. Hoare, "An Axiomatic Basis for Computer Programming," Co_tn%,
ACM 12(10) p,p. 576-580 (October 1989),

19, F. Baker, "Chief Programmer Team Management of Production Program-

ruing,"IBM Systems Jo_ II(i)pp. 56-78 (1972).

20. E. W. Dijkstra, "Notes on Structured Programming," in Structured Pro-
gr,,m.Tn._g,Academic Press, London (1972).

21. D.E. Knuth, "Structured Programming With Go To Statements," Conzpu/_n_j
S_n-uelm 8(4)pp. 281-301 (December 1974).

22. H. Mills,"Chief Programmer Teams: Principles and Procedures," FSC 71-
5108, IBM Federal Systems Division(1971).

23. H. Mills,"Mathematical Foundations for Structured Programming," FSC 72-

8012, IBM Federal Systems Division(1972).

24. N. Wirth, "Program Development by Stepwise Refinement," Comm. ACM
14(4) pp. 221-227 (April1971).

25. E. Satterthwmte, "Debugging Tools for High-Level Languages," Soft_u,,re-
}_tice and Ezper_nce _(8) pp. 197-217 (July-September 1972).

28 W Howden, "Theoretical and Empirical Studies of Program Testing," P_oc.
TA4.rdlwtntl.Conf. Soft_uareEngineemng, pp 305-310 (May 1978).

27. J. Goodenough and S. Gerhart, "Toward a theory of test data selection,"
Proc. ITttntl.Conf. Reliable Software, pp. 493-510 (1975).

28. J. Gannon, "Language Design to Enhance Programming Reliability,"CSRG-

47, University of Toronto Dept. of Computer Science ComputerSystems
Research Group (1975).

29. J Gannon and J. Homing, "Language Design for Programming Reliability,"
IEEE Prans. Soft_,_:re E_. SE-l(2)(June 1975).

30. C. A. R. Hoare and N. Wirth, "An Axiomatic Definition of the Programming
Language Pascal," Acta Infor'r, tatica 2 pp. 335-855 (1978).

31. K. Jensen and N. Wirth, Pascal User MaTzual and Report Second Edition,
Springer-Verlag, New York (1974).

32. V. Basiti and D. Weiss, "Evaluating Software Development By Analysis of
Changes: The Data From The Software Engineering Laboratory," , ().

33. V. Bastli, M. Zetkowitz, F. McGarry, and others, "The Software Engineering
Laboratory," Report TR-535, University of Maryland (May !977)

34 B Boehm, "An Experiment in Small-Scale Application Software Engineer-
ing," Report TRW-SS-80-01, TRW (I 980)

5-25

35 A. Endres, "Analysis and Causes of Errors in Systems Programs," Pro¢
Intntl. Con/. Reliable Soft?_are, pp. 327-336 (1975).

36. V. Basili and D. Weiss, "Evaluation of a Software Requirements Document By
Analysis of Change Data," Proc.]_fth lntntl. Conj. Soft_uare Engineering,
pp. 314-323 (March 1981).

37. G. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits On
Our Capacity For Processing Information," TAe Ps'ychologicaZ Re_i_
88(2) pp. 81-97 (march 1956).

38. D. L. Parnas, "On the crtterta to be used in decomposing systems into
modules," CornTn. ACM 15(12) pp. 1053-1058 (December 1972).

39. J. Brown, The Social Psychology of [nd_str'y, Penguin Books, Baltimore
(1954).

5-26

I

I

I

I
I
I
I

I
I

I
I

i

I
I

I
I

I
I
l

